- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000100001000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Dugan, Owen (2)
-
Arora, Simran (1)
-
Balla, Julia (1)
-
Dangovski, Rumen (1)
-
Grogan, Jessica (1)
-
Huang, Sihao (1)
-
Liu, Jerry (1)
-
Rao, Ashish (1)
-
Re, Chris (1)
-
Rudra, Atri (1)
-
Soljačić, Marin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 24, 2026
-
Balla, Julia; Huang, Sihao; Dugan, Owen; Dangovski, Rumen; Soljačić, Marin (, Humanities and Social Sciences Communications)Abstract In social science, formal and quantitative models, ranging from ones that describe economic growth to collective action, are used to formulate mechanistic explanations of the observed phenomena, provide predictions, and uncover new research questions. Here, we demonstrate the use of a machine learning system to aid the discovery of symbolic models that capture non-linear and dynamical relationships in social science datasets. By extending neuro-symbolic methods to find compact functions and differential equations in noisy and longitudinal data, we show that our system can be used to discover interpretable models from real-world data in economics and sociology. Augmenting existing workflows with symbolic regression can help uncover novel relationships and explore counterfactual models during the scientific process. We propose that this AI-assisted framework can bridge parametric and non-parametric models commonly employed in social science research by systematically exploring the space of non-linear models and enabling fine-grained control over expressivity and interpretability.more » « lessFree, publicly-accessible full text available January 31, 2026
An official website of the United States government
